Archive | January, 2013

The sun, our star – Part 1

27 Jan

“When pain brings you down, don’t be silly, don’t close your eyes and cry, you just might be in the best position to see the sun shine.”  – Alanis Morisetti

“If I had to choose a religion, the sun as the universal giver of life would be my god.”  
―   Napoleon Bonaparte

Without our star, the Sun, we were not here on this planet, or any form of life we know, it is common knowledge. Its importance is clear in the myths of the sun and of the cycles of nature. Osiris, Adonis, Dionysus, Mithras, Buda, Bachus, Jesus Christ, they all were born on the 25th December, since it is …and they all die around Easter, when nature reborn from the cold winter (in north hemisphere).

Below it is shown the decorative theme in the tomb of Ramesses IX showing the king’s adoration of the sun disk, accompanied by Isis and Nephthys on the lintel over the entrance.


To understand our sun we need to recall what is a plasma. The plasma is considered to be the fourth state of matter, after the gas, liquid and solid states. At ambient pressure and temperature, a gas is a good electrical insulator. For example, if we connect two electrodes separated by a few millimeters to an electric generator (let us say, feeding the circuit with 220 Volts), apparently there is no net current crossing the space between them. However, if you do the same experiment, with the electrodes immersed in a gas at a lower pressure, you will notice na electric current across the gas, and at the same time, the gas start to glow with a color that depends on the spectral composition of the gas and the current value and gas pressure (VIDEO 1). The current is mainly transported by free electrons that succeed to cross the gas from one electrode (cathode) to the other (anode) by taking energy from the electric field acting between the two electrodes. We say that the gas become a plasma, a phenomena that currently can be seen almost everywhere (VIDEO 2).

Another type of plasma discharge occurs around high-tension distribution lines that fed sub-stations and cities with electric energy. The electric field near electrodes (the role of electrodes being in this case played by two cables, or by a cable and electrical connection to earth). Electrons are created by several processes and are strongly transported by the field, producing streamers of electrons that originate from the ionization process of molecules and atoms. This type of discharge is called corona discharges, and are accompanied by a characteristic noise, and it is shown in Fig.2. Artificial sunlight can be obtained using small bulbs (for example, with a small drop of Mercury inside a quartz tube filled with a rare gas at a low pressure, typically a few millimeters of Mercury or one hundred pascal, see pressure units here). Seasonal affective disorder can be treated with sun lamp light therapy {1}.

enseignes lumineuses

Fig.1 – Tokyo is full of illuminated advertisements. Image credit: http://whisky.centerblog

When the voltage applied to the electrodes inside the bulb increases, a small current cross the gas, ionizing molecules and atoms (neutral particles) and a feeble luminosity appears – that’s what is called a glow discharge (see VIDEO). The word plasma was coined by Irving Langmuir (1881-1957), a term that ensued from his observations of the separation of the plasma into cell-like regions with boundaries formed by charged particles sheathes, whenever regions with different densities, temperatures, or electromagnetic fields inhomogeneity are present. [1]. In general terms, plasma is a state of matter composed by ions (positive and negative) and free electrons subject to collective Coulonbian forces in a médium composed by neutral particles (atomes and/or molecules).

If the electrons and ions densities are much lower than the desnity of neutral particles, the plasma is said to be weakly ionized (glow discharges, lightning); if, by the contrary, the density of neutral particles is much lower than thecharged particles density, the plasma is said to be strongly ionized (stars, thermonuclear reactors). If ñe    represents the average number density of electrons (average number of electrons per unit of volume) and ñZ is the average number density of ions with ionic positive charge , then the global condition is satisfied:

Globally, the plasma state is characterized by equal number of positive and negative charges.


The electromagnetic field is well described by the set of Maxwell’s equations:


This set of equations are defined when the Lorentz force is given by:


and the constitutive equations are defined by D=εE  and B=μH, relating the electric field vector E and the displacement vector D, and as well the magnetic flux density vector B and magnetic field vector H, while ε and μ are the permittivity and permeability of the medium, and ρ and J are the electric charge and current densities, respectively. m and q are the mass and charge of the particle.

The sun magnetic field gives rise to sunspots, coronal loops, faculae, solar flares, solar wind and prominences, solar cycle, irradiance variability. Usually the magnetic field near the solar surface is measured using the Zeeman effect. Until now, the vast majority of all recordings of the magnetic field still refer to measurements of the Zeeman effect of the photosphere.

Image credit:

Coronal loops. Image credit:

The sun’s magnetic field is responsible for generating self-excited dynamos [2], magnetoconvection phenomena, interaction of radiation with magnetized gas, magnetic reconnection.

The sun rotates around its axis in 26 days (28 days when viewed from the Earth) in the equatorial region, while in the polar regions it takes 37 days (40,5 days when seen from Earth). The spacecraft Mariner II in 1962 detected the solar wind. the speed distribution, direction, temperature, composition, and spatial structure of the solar wind were mapped from a number of spacecraft, mostly sampling at low solar latitudes (few degrees from the plane of the ecliptic). It is the solar wind that stretches the interplanetary magnetic field. The source of the interplanetary sector structure is invariant with time. This means that the same boundary might be observed anew after 27 days. This is just na average value, since the solar wind velocity can modify the time of arrival of a sector boundary in 1 or 2 days.

Faculae, the birghtest region around a sunspot. Image credit:

Faculae, the brightest region around a sunspot. Image credit:

What is amazing is the Archimedes spiral that the magnetic field lines of force of the solar wind depict in space, and shown in the document shown below [4].

What scientists found is na Archimedean spiral like figure of the Interplanetary Magnetic Field that reminds the swastika (卐) (Sanskrit: स्वस्तिक), i.e., an equilateral cross with four arms bent at 90 degrees, sacred symbol in Hinduism, Buddhism, and Jainism, which literally means “to be good”, or “being with higher self”.Sun001


The Interplanetary magnetic field lines of force separated in sectors, as seen by Mariner II.


Swastika, means “to be good”

The resemblance between the IMF and the swastika suggest the following question: Did the ancients had knowledge that have been lost to time?…

Below it is shown the solar structure.


The structure of the sun, our star. Image credit:


You can check out in real-time the current status of our Sun here:

To be continued…

[1] Mario J. Pinheiro, Plasma: the origin of the word, in article 363

[2] Dynamo effect, page of the university of Oregon

[3] Geodynamo theory and simulations, Paul H. roberts and Gary A. Glatzmaier, Rev. Mod. Phys. vol. 72, Nº4, October 2000

[4] Large scale properties of the Interplanetary magnetic field, Kennett H. Schatten, NASA Report


{1} Sun lamps.

%d bloggers like this: