Archive | Academia RSS feed for this section

Learn how to learn

20 Mar

10 Rules of Good Studying

  1. Use recall. After you read a page, look away and recall the main ideas. Highlight very little, and never highlight anything you haven’t put in your mind first by recalling. Try recalling main ideas when you are walking to class or in a different room from where you originally learned it. An ability to recall—to generate the ideas from inside yourself—is one of the key indicators of good learning.
  2. Test yourself. On everything. All the time. Flash cards are your friend.
  3. Chunk your problems. Chunking is understanding and practicing with a problem solution so that it can all come to mind in a flash. After you solve a problem, rehearse it. Make sure you can solve it cold—every step. Pretend it’s a song and learn to play it over and over again in your mind, so the information combines into one smooth chunk you can pull up whenever you want.
  4. Space your repetition. Spread out your learning in any subject a little every day, just like an athlete. Your brain is like a muscle—it can handle only a limited amount of exercise on one subject at a time.
  5. Alternate different problem-solving techniques during your practice. Never practice too long at any one session using only one problem-solving technique—after a while, you are just mimicking what you did on the previous problem. Mix it up and work on different types of problems. This teaches you both how and when to use a technique. (Books generally are not set up this way, so you’ll need to do this on your own.) After every assignment and test, go over your errors, make sure you understand why you made them, and then rework your solutions. To study most effectively, handwrite (don’t type) a problem on one side of a flash card and the solution on the other. (Handwriting builds stronger neural structures in memory than typing.) You might also photograph the card if you want to load it into a study app on your smartphone. Quiz yourself randomly on different types of problems. Another way to do this is to randomly flip through your book, pick out a problem, and see whether you can solve it cold.
  6. Take breaks. It is common to be unable to solve problems or figure out concepts in math or science the first time you encounter them. This is why a little study every day is much better than a lot of studying all at once. When you get frustrated with a math or science problem, take a break so that another part of your mind can take over and work in the background.
  7. Use explanatory questioning and simple analogies. Whenever you are struggling with a concept, think to yourself, How can I explain this so that a ten-year-old could understand it? Using an analogy really helps, like saying that the flow of electricity is like the flow of water. Don’t just think your explanation—say it out loud or put it in writing. The additional effort of speaking and writing allows you to more deeply encode (that is, convert into neural memory structures) what you are learning.
  8. Focus. Turn off all interrupting beeps and alarms on your phone and computer, and then turn on a timer for twenty-five minutes. Focus intently for those twenty-five minutes and try to work as diligently as you can. After the timer goes off, give yourself a small, fun reward. A few of these sessions in a day can really move your studies forward. Try to set up times and places where studying—not glancing at your computer or phone—is just something you naturally do.
  9. Eat your frogs first. Do the hardest thing earliest in the day, when you are fresh.
  10. Make a mental contrast. Imagine where you’ve come from and contrast that with the dream of where your studies will take you. Post a picture or words in your workspace to remind you of your dream. Look at that when you find your motivation lagging. This work will pay off both for you and those you love!

10 Rules of Bad Studying

Excerpted from A Mind for Numbers: How to Excel in Math and Science (Even if You Flunked Algebra), by Barbara Oakley, Penguin, July, 2014

Avoid these techniques—they can waste your time even while they fool you into thinking you’re learning!

  1. Passive rereading—sitting passively and running your eyes back over a page. Unless you can prove that the material is moving into your brain by recalling the main ideas without looking at the page, rereading is a waste of time.
  2. Letting highlights overwhelm you. Highlighting your text can fool your mind into thinking you are putting something in your brain, when all you’re really doing is moving your hand. A little highlighting here and there is okay—sometimes it can be helpful in flagging important points. But if you are using highlighting as a memory tool, make sure that what you mark is also going into your brain.
  3. Merely glancing at a problem’s solution and thinking you know how to do it. This is one of the worst errors students make while studying. You need to be able to solve a problem step-by-step, without looking at the solution.
  4. Waiting until the last minute to study. Would you cram at the last minute if you were practicing for a track meet? Your brain is like a muscle—it can handle only a limited amount of exercise on one subject at a time.
  5. Repeatedly solving problems of the same type that you already know how to solve. If you just sit around solving similar problems during your practice, you’re not actually preparing for a test—it’s like preparing for a big basketball game by just practicing your dribbling.
  6. Letting study sessions with friends turn into chat sessions. Checking your problem solving with friends, and quizzing one another on what you know, can make learning more enjoyable, expose flaws in your thinking, and deepen your learning. But if your joint study sessions turn to fun before the work is done, you’re wasting your time and should find another study group.
  7. Neglecting to read the textbook before you start working problems. Would you dive into a pool before you knew how to swim? The textbook is your swimming instructor—it guides you toward the answers. You will flounder and waste your time if you don’t bother to read it. Before you begin to read, however, take a quick glance over the chapter or section to get a sense of what it’s about.
  8. Not checking with your instructors or classmates to clear up points of confusion. Professors are used to lost students coming in for guidance—it’s our job to help you. The students we worry about are the ones who don’t come in. Don’t be one of those students.
  9. Thinking you can learn deeply when you are being constantly distracted. Every tiny pull toward an instant message or conversation means you have less brain power to devote to learning. Every tug of interrupted attention pulls out tiny neural roots before they can grow.
  10. Not getting enough sleep. Your brain pieces together problem-solving techniques when you sleep, and it also practices and repeats whatever you put in mind before you go to sleep. Prolonged fatigue allows toxins to build up in the brain that disrupt the neural connections you need to think quickly and well. If you don’t get a good sleep before a test, NOTHING ELSE YOU HAVE DONE WILL MATTER.


excerpted from the book A Mind for Numbers: How to Excel in Math and Science (Even if You Flunked Algebra), by Barbara Oakley, Penguin, July, 2014. Feel free to copy these rules and redistribute them, as long as you keep the original wording and this citation.

A valuable collection of educational vintage films

19 Mar

Please, click on the topic to access the video.

Radar: Technical principles: Mechanics

Frames of reference

Radar: Technical Principles. Indicators

Electric Motors: AC motors and generators

DC motors and generators

Principles of Electromagnetism 1927 DeVry School Films Inc., Carpenter-Goldman Laboratories
Electromagnetic Waves – with Sir Lawrence Bragg
Counting Electrical Charges in Motion 1961 PSSC; James Strickland
Electronics: Introduction to LC Oscillators circa 1974 US Air Force Training Film
Electronics: Magnetic Cores I: Properties 1961 US Army Training Film
Aerospike Engine
Space Flight: The Application of Orbital Mechanics
Sound Waves in Air 1961 PSSC; Richard Bolt, MIT; Acoustic Lens Demonstration
Electronics: Waveguide Plumbing 1979 US Air Force Training Film
Nuclear Physics: “Random Events” 1961 PSSC; Donald Ivey, Patterson Hume, U of Toronto
Physics: “Short Time Intervals” 1960 PSSC Physical Science Study Committee; MIT
Time Dilation: An Experiment With Mu Mesons 1962 PSSC; David Frisch, James Smith, MIT Physics
Physics: “Elastic Collision and Stored Energy” 1961 PSSC; James Strickland, Energy, Momentum…
Physics: Crystals 1958 Alan Holden – Bell Laboratories – PSSC Physical Science Study Committee
Lesson 34 – Resonance – Forced Vibrations – Demonstrations in Physics
Lesson 12 – The Strange Behavior of Rolling Things – Demonstrations in Physics
Waves and Vibrations – with Sir Lawrence Bragg

The Wizard’s Apprentice

1 Nov

Tarkovsky:  “ there is nothing more beautiful and
mysterious than simplicity.”
– Andrei Tarkovsky

Goethe wanted to give us a lesson with his poetic masterpiece «the aprentice of the wizard» written in 1797 (“Der Zauberlehrling” in German). In Johann Wolfgang von Goethe’s poem, the wizard’s assistant try to work out some of the magic acts performed by the wizard, but without to properly control them. Walt Disney parodiate this situation in the 1940 animated movie Fantasia (watch the trailer here) with music by the French composer Paul Abraham Dukas (1865-1935). In his other masterpiece, Faust, he took pratically thirty years of his life writing (uncontinuosly), but every new experience of his life was deeply meditated, wandering into every field of knowledge and, at the end, coming back with sorrow and unsatisfaction, showing to him the eternal problem of the thinker and the various nuances of the social existence of all of us.

The word Magic comes from the Persian language, Magu-sh, name given by the Persian and Medes (people that lived in the area called Media in the actual Iran) to the priests of the religion of Zaratustra (their disciples were called Meghestom), and it was used by Jeremias (Book of) to designate a Babylonian priest. The primitive meaning seems to be “worship of the light” [2]. For the Parsees, the Medes, and Egyptians the term Magic meant a higher knowledge of nature, where religion and astronomy made an integral part of it. The Magi were driven by justice, truth, aiming to preserve their secret wisdom.

Dr. Faustus, Don Giovanni, Frankenstein, like the wizard’s apprentice, they all represent in many ways an archetypal hero who challenge authority and the society (and thus God), in a transgression that represent the eternal tragedy of humanity, seeking dominate nature and the others fellow beings via their seductive and destructive power.

But the judgement of the apprentice (aren’t we all?) is not so simple, because he faces an epistemological crisis about the limits of the human knowledge,  the undecibility (does we have a soul? can we built a robot at our own image? what can we discover investigating the “big questions” beyond the reasonable?…), attaining the «[…] porous boundaries between human and nonhuman, organic and inorganic» [1].

Mozart’s Don Giovanni inspired many artists, composers poets, writers (Byron, Baudelaire, Mérimée, Pushkin, Tolstoi), philosophers,…One of the most famous arias of Don Giovanni is “Il mio tesoro” (“My Treasure”), and I propose you to listen here sang by the famous Irish tenor John McCormack.

Humanity’s greatest strength is his ability for thinking, for sure, and our abstract thought separate us from the animal kingdom in a great measure, althoug in the actuality we are ruled by shameless people…Political scientists (it is not clear to me why they call themselves “scientists”) opened the Pandora’s box, they are in fact apprentices’s of the wizard. They use science to control society for the interest of some groups. Like Pinocchio, we are bound to something, to our creature, and like Pinocchio we have to cut the “strings” that bound us to our Geppettos.

One of the earliest paintings of Leonardo da Vinci, the Adoration of the Magi, is a testimony of the crisis a creative man may came across in his search of the absolute. Leonardo’s tragic destiny  starts to unfold malefic forces around him, with numerous material complications, or possibly he  restrains himself to acomplish the masterpiece, knowing that he already mastered all the techniques. Lorenzo il Magnifico, ruler of the Florentine Republic shows indiference towards Leonardo [Antonina Vallentin, in Leonardo da Vinci] and this hurts him a lot. As the time is running (like the Roman poet Virgilus wrote in his Georgics: Sed fugit interea fugit irreparabile tempus, singula dum capti circumvectamur amore) he fears for not having time to acquire the knowledge he deeply seeks. His pratical side drove him to invent a lot of apparatus intending to give to man the power over nature. Tempus fugit and a sensitive man feels the need to understand fully the how and why we are here…Andrei Tarkovsky, the russian movie director, incorporated motifs of The Adoration of the Magi in the narrative of his movie The Sacrifice (with music of Sebastian Bach Mattheus Passion, listen here), which represents his interpretation of the painting, but in a time reversal way, predicting instead of the bright beginning of humanity, the dark future of Western culture. Science and technology, only by themselves, do not fulfil the humankind needs.

Michelangelo captured the sublime moment of creation in his famous painting of the Sistine Chapel; Adam, with his arm stretched waiting for the finger of God touching, and apparently between man and God there is just an interposed- gap, that’s Michelangelo’s representation of life itself (p. 142, Ref.[1]).

This dramatic situation is well described by Erwin Schrodinger in one of the conferences organized by the Association Eranos, held in Asconna, Switzerland. He criticized the materialistic egotism of natural sciences and that ethics and moral cannot both be dissociated from the scientific research [3]. For the alchemist some knowledge must be kept in secret in order to not fall in the wrong hands, unpreprared politicians and rulers, because then they may serve the evil.The scientific method is certainly powerful, searching the causes of phenomena, analytic and methodic, aiming to formulate the laws that govern phenomena. But it potentiates the materialistic egotism typical of our actual societies, the consumist societies living with the only purpose to consume…

For some this may represent “The End of History” [4]. Science has the only purpose to answer to our “how ?”, not our “why ?”, which is the purpose of philosophy. Philosophy is predominantly synthetic, going from the particular to the general, critic and systematic, searching the «Why?» of these phenomena, their raison d’ être and their value. That ‘s why a world without science AND philosophy is open to tragedy.

REF.

[1] Scott Bukatman, in Beyond the finite: the Sublime in Art and Science, Ed. by Roald Hoffmann, Ian Boyd White p. 129 (OUP, New York, 2011)[2] The History of Magic, by Joseph Ennemoser, Translated from the German by William Howitt Vol I (Henry G. Bohn, London, 1854)[3] Friedrich W. Doucet, in O Livro de Ouro das Ciências Ocultas (Translation to Portuguese)[4] Jean Braudillard, The Illusion of the End (Stanford University Press, Stanford, 1994)

%d bloggers like this: