Tag Archives: math

📌How to Derive the Hamiltonian for Phonons in a Crystal Lattice

27 Mar

\text{Kinetic Energy} = \frac{1}{2m} \sum_{n} \left(\sum_k P_k e^{ikna}\right) \left(\sum_{k'} P_{k'} e^{ik'na}\right)

\sum_{n} e^{i(k+k')na} = N \delta_{k,-k'}

\text{Potential Energy} = \frac{1}{2} \sum_{n} K (u_{n+1} - u_n)^2
u_n = \sum_k A_k e^{ikna}
u_{n+1} = \sum_k A_k e^{ik(n+1)a} = \sum_k A_k e^{ika} e^{ikna}
\text{Potential Energy} = \frac{1}{2} \sum_{n} K \left( \sum_k A_k e^{ika} e^{ikna} - \sum_k A_k e^{ikna} \right)^2
\text{Potential Energy} = \frac{1}{2} \sum_{n} K \left( \sum_k (e^{ika} - 1) A_k e^{ikna} \right)^2
\text{Potential Energy} = \frac{1}{2} K \sum_n \sum_k \sum_{k'} (e^{ika} - 1)(e^{-ika} - 1) A_k A_{k'} e^{i(k-k')na}
\sum_n e^{i(k-k')na} = N \delta_{k,k'}
\text{Potential Energy} = \frac{N}{2} K \sum_k |e^{ika} - 1|^2 A_k A_{-k}
\text{Potential Energy} = \frac{N}{2} \sum_k K (2 - 2\cos(ka)) A_k A_{-k}

Transformed Potential Energy Expression:

\text{Potential Energy} = \frac{1}{2} K \sum_n \left( \sum_k A_k e^{ika} e^{ikna} - \sum_k A_k e^{ikna} \right)^2
\text{Potential Energy} = \frac{1}{2} K \sum_n \left( \sum_k (e^{ika} - 1) A_k e^{ikna} \right)^2
\text{Potential Energy} = \frac{1}{2} K \sum_n \sum_k \sum_{k'} (e^{ika} - 1) A_k (e^{-ika} - 1) A_{k'} e^{i(k-k')na}
\sum_n e^{i(k-k')na} = N \delta_{k,k'}
\text{Potential Energy} = \frac{N}{2} K \sum_k |e^{ika} - 1|^2 A_k A_{-k}

This is further simplified using the identity |e^{ika} - 1|^2 = 2 - 2\cos(ka)|:

\text{Potential Energy} = \frac{N}{2} \sum_k K (2 - 2\cos(ka)) A_k A_{-k}
\text{Potential Energy} = \frac{N}{2} \sum_k 2K \sin^2\left(\frac{ka}{2}\right) A_k A_{-k}
\sum_n e^{i(k-k')na} = N \delta_{k,k'}
\text{Potential Energy} = \frac{1}{2} K N \sum_k |e^{ika} - 1|^2 A_k A_{-k}
|e^{ika} - 1|^2 = (e^{ika} - 1)(e^{-ika} - 1) = (e^{ika} - 1)(e^{-ika} - 1) = 2 - 2\cos(ka)
\text{Potential Energy} = \frac{N}{2} \sum_k K (2 - 2\cos(ka)) A_k A_{-k}
\text{Potential Energy} = \frac{N}{2} \sum_k 2K \sin^2\left(\frac{ka}{2}\right) A_k A_{-k}

Hamiltonian Expression:

H = \frac{N}{2} \sum_k \left(\frac{1}{m} P_k P_{-k} + 2K \sin^2\left(\frac{ka}{2}\right) A_k A_{-k} \right)

Simplified Hamiltonian with Angular Frequency:

We can introduce the angular frequency \omega_k​ for the phonon modes to simplify the expression:

\omega_k = \sqrt{\frac{2K}{m} \sin^2\left(\frac{ka}{2}\right)}
H = \frac{1}{2} \sum_k \left(\frac{N}{m} P_k P_{-k} + m \omega_k^2 A_k A_{-k} \right)

Conclusion